Seasonal photosynthetic responses to light and temperature in
نویسندگان
چکیده
curves were measured seasonally in seedlings of white spruce (Picea glauca (Moench.) Voss) grown for two years in the understory of aspen (Populus tremuloides Michx.) or in the open in central Alberta. Light-saturated rate of net photosynthesis, the optimum temperature for net photosynthesis, transpiration rate, photochemical efficiency, and stomatal and mesophyll conductances increased from spring to summer and declined thereafter, whereas dark respiration rate and compensation and saturation points were highest in spring. Depression of photosynthetic parameters was greater in open-grown seedlings than in understory seedlings during the periods in spring and autumn when night frosts were common. Net photosynthetic rates were similar in understory and open-grown seedlings in summer, but they were significantly lower in open-grown seedlings in spring and autumn. Significantly lower transpiration rates and stomatal conductances in opengrown seedlings than in understory seedlings were also observed at 15 and 25 °C in the autumn. Shoot and needle growth were less in open-grown seedlings than in understory seedlings. In summer, when irradiances were low in the aspen understory, understory white spruce seedlings maintained a positive carbon balance by decreasing their compensation and saturation points and increasing their photochemical efficiency compared to spring and autumn.
منابع مشابه
Field and controlled environment measurements show strong seasonal acclimation in photosynthesis and respiration potential in boreal Scots pine
Understanding the seasonality of photosynthesis in boreal evergreen trees and its control by the environment requires separation of the instantaneous and slow responses, as well as the dynamics of light reactions, carbon reactions, and respiration. We determined the seasonality of photosynthetic light response and respiration parameters of Scots pine (Pinus sylvestris L.) in the field in southe...
متن کاملSeasonal trends and relationships of light, temperature and leaf physiological traits of sugar beets (Beta vulgaris L.) grown under semi-arid, Mediterranean conditions
The seasonal changes of leaf physiological traits and its relationship with abiotic factors (photosynthetic active radiation-PAR, leaf temperature-Tleaf, air temperature-Tair, Tleaf - Tair- ΔT) were studied on sugar beets grown under the semi-arid conditions of central Greece. Sugar beet (Beta vulgaris L.) cv Rizor was established in a Randomised Complete Block design experiment for two years (...
متن کاملVariation in photosynthetic response to temperature in a guild of winter annual plants.
How species respond to environmental variation can have important consequences for population and community dynamics. Temperature, in particular, is one source of variation expected to strongly influence plant performance. Here, we compared photosynthetic responses to temperature across a guild of winter annual plants. Previous work in this system identified a trade-off between relative growth ...
متن کاملPhotosynthetic parameter estimations by considering interactive effects of light, temperature and CO2 concentration
Biochemical leaf photosynthesis models are evaluated by laboratory results andhave been widely used at field scale for quantification of plant production,biochemical cycles and land surface processes. It is a key issue to search forappropriate model structure and parameterization, which determine modeluncertainty. A leaf photosynthesis model that couples the Farquhar-vonCaemmerer-Berry (FvCB) f...
متن کاملResponses of inulin content and inulin yield of Jerusalem artichoke to seasonal environments
Seasonal variation (e.g. temperature and photoperiod) between growing seasons might affectinulin content and inulin yield of Jerusalem artichoke. However, there is limited information ongenotypic response to seasons for inulin content and inulin yield. The objective of this studywas to investigate the variability in genotypic response to seasons for inulin content and inulinyield of Jerusalem a...
متن کاملNeedle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees.
BACKGROUND AND AIMS The carbon (C) balance of boreal terrestrial ecosystems is sensitive to increasing temperature, but the direction and thresholds of responses are uncertain. Annual C uptake in Picea and other evergreen boreal conifers is dependent on seasonal- and cohort-specific photosynthetic and respiratory temperature response functions, so this study examined the physiological significa...
متن کامل